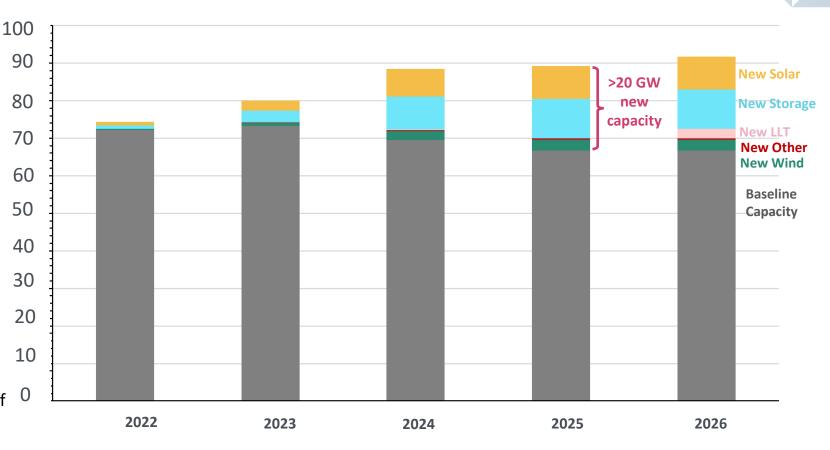


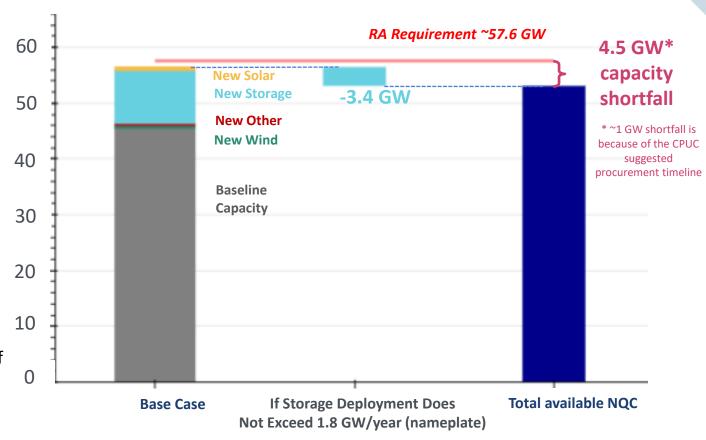
PRESENTED BY

Sam Newell Wonjun Chang Ragini Sreenath

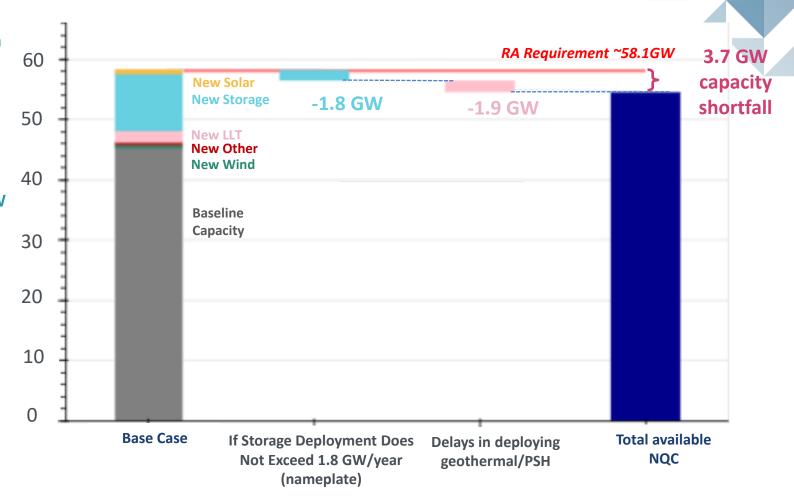
AUGUST 2, 2022

PRESENTED FOR


Policy Impact on Behalf of Carbon Free California


New Resources Needed for Reliability (in nameplate GW)

- The state has analyzed how much capacity is needed to operate reliably under adverse weather scenarios. They determined that a 22.5% reserve margin is needed, and ordered the procurement of 11.5 GW NQC in the Mid Term Reliability Report to 90 meet that need.
- CEC's Midterm Reliability Analysis translates that into >20GW of new nameplate capacity over the next 5 years, of resources that are consistent with clean energy goals and can provide that much NQC (net of intermittency and energy limits). This includes
 - >8.7 GW Solar by 2025
 - >10 GW of 4-hr Storage by 2025
 - 2 GW of Long-Lead Time Resources by 2026
- Deploying so much capacity will require siting and interconnecting resources at unprecedented rates, while being challenged by supply chain issues
- The following analysis takes the CEC's assessment of reliability needs and their assumed portfolio to meet that need as a starting point; then examines the impact of potential capacity deployment delays on possible shortages relative to the CEC's assessed need (in NQC terms)


2025 Net Qualifying Capacity (NQC) Supply (in GW)

- Adequacy depends on adding > 10 GW storage (nameplate)
 - With max build rate of 6 GW/yr nameplate in 2023
 - But the max historical rate was 1.8 GW in 2021
 - Even this may be optimistic about supply chains
- If no more than 1.8 GW/yr materializes, a 3.4 GW NQC shortfall could occur
 - This would subject the state to the risk of rolling blackouts in extreme weather (as in August 2020)
 - Could be worse if some events exceed 4 hours
 - Could be worse if PV deployment is limited to recent historical rate of 1 GW; not a large direct effect on NQC but would reduce the value of storage
- Retaining Diablo could reduce the gap by ~2.2 GW
 - During the September peak (Base Case assumes both units of Diablo retire by August 26th, 2025 as planned)

2026 Net Qualifying Capacity (NQC) Supply (in GW)

- Achieving adequacy in 2026 further assumes 1 GW each of geothermal and pumped storage
 - Having 1 GW new PSH online by 2026 is extremely optimistic given permitting challenges and construction timelines
 - No large geothermal projects are yet in the CAISO queue or under development, and would take several years to develop
- If these do not materialize by 2026 and battery deployment is limited to 1.8 GW/yr, a shortfall of 3.7 GW could occur; if only one of them materializes, the state faces a shortfall of approximately 2 GW
- Retaining Diablo could cut the shortfall in half and could eliminate it entirely, if only one of the two issues occur
 - This does not account for additional capacity that could be retained or added via the recently established strategic electricity reliability reserve fund at a cost; thus retaining Diablo would help maintain reliability even if it is not be the only way to maintain reliability
 - But retaining Diablo provides additional benefits of helping California reliably meet its long-term clean energy goals, while reducing cumulative emissions by 40 MMT through 2032 and of saving over \$4 billion through 2045.¹
 - Note: the MTR discusses possible extensions to 2028 for Geo and PSH resources, but the state would suffer reserve margins below the 22.5% target in the meantime, that Diablo could fill

